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ПРЕДИСЛОВИЕ

Методические указания для студентов по выполнению практических работ  адресованы  студентам очной, заочной и заочной с элементами дистанционных технологий формы обучения.


Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.


Приступая к выполнению практической работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы. 


Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем. 

Наличие положительной оценки по практическим работам необходимо для допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую  необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ


1. Студент должен прийти на практическое занятие подготовленным к выполнению практической работы.


2. После проведения практической работы студент должен представить отчет о проделанной работе.


3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.


Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий. 

Обеспеченность занятия (средства обучения):
1. Учебно-методическая литература:

Основные источники:

1. Богомолов Н.В.. Практические занятия по математике: Учебное пособие для СПО/ Н.В, Богомолов.- 11-е изд., перераб. и доп.- М. :Издательство Юрайт,, 2016.-495 с.;

2. Григорьев В.П. Сборник задач по высшей математике: Учеб. пособие для студентов учрежд. СПО / В.П.Григорьев, Т.Н.Сабурова. – М.: Издательский центр «Академия», 2014. – 160 с.

3. Спирина, М. С. Дискретная математика : учебник для студ.учреждений сред.проф.образования /  М. С. Спирина, П. А. Спирин. - 11-е изд., стер. - М.: Издательский центр «Академия»,  2015.- 368 с.;

4. Спирина М.С., Спирин П.А. Теория вероятностей и математическая статистика: учебник для студ.учреждений сред.проф.образования/  /  М. С. Спирина, П. А. Спирин. - 7-е изд., стер. - М.: Издательский центр «Академия»,  2016.- 352 с.

          Дополнительные источники: 

1. Высшая математика: Учебник / Л.Т. Ячменёв. - М.: ИЦ РИОР: НИЦ Инфра-М, 2013. - 752 с.: 60x90 1/16. - (Высшее образование; Бакалавриат). (переплет) ISBN 978-5-369-01032-7;

2. Дискретная математика: сборник задач / А.И. Гусева, В.С. Киреев, А.Н. Тихомирова. — М.: КУРС: ИНФРА-М, 2017. — 224 с. — (Среднее профессиональное образование).

3. Кочетков Е.С. Теория вероятностей и математическая статистика : учебник / Е.С. Кочетков, С.О. Смерчинская, В.В. Соколов. — 2-е изд., перераб. и доп. — М. : ФОРУМ : ИНФРА-М, 2017. — 240 с. — (Среднее профессиональное образование).

Интернет ресурсы:

1. ИНТУИТ. Национальный открытый университет. Проект Издательства «Открытые Системы». [Электронный ресурс]- режим доступа: http://www.intuit.ru
2. Электронно-библиотечная система [Электронный ресурс] – режим доступа:  http://znanium.com/.

      2. Технические средства обучения:

- компьютер

- мультимедийный проектор

- экран

      -  калькулятор  инженерный.

Порядок выполнения отчета по практической работе
1. Ознакомиться с теоретическим материалом по практической работе.

2. Записать краткий конспект теоретической части.

3. Выполнить предложенное задание.

4. Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5. Ответить на контрольные вопросы.

6. Записать выводы о проделанной работе.

Практическая работа № 1 
 «Вычисление пределов функций. Раскрытие неопределенностей»
Цель работы: научиться вычислять пределы с использованием замечательных пределов, раскрывать неопределённости
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 
          уметь:

-применять методы дифференциального и интегрального исчисления;

знать: 

- основные понятия и методы математического анализа;
   -основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

Теорема 1: Функция не может иметь двух разных пределов в точке.

Теорема 2: Предел суммы (разности) функций равен сумме (разности) их пределов, если последние существуют:
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Теорема 3: Предел произведения функций равен произведению их пределов, если последние существуют:
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Следствие: Постоянный множитель можно выносить за знак предела, т.е.
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Теорема 4: Предел отношений двух функций равен отношению их пределов, если последние существуют и предел делителя отличен от нуля:
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Замечательные пределы
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Примеры по выполнению практической работы

      Приводим некоторые приёмы вычисления пределов, излагая их на конкретных примерах.

1) Предел многочлена. Вычислить 
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       Таким образом, для вычисления предела многочлена f (x) при  x → x0  достаточно вместо переменной x поставить значение x0 , к которому она стремится, и выполнить соответствующие действия, т.е.
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2) Предел отношения двух многочленов,  
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, где x0 – число.

   а) Если g (x0) ≠ 0, то можно применить теорему о пределе частного.

       Пример 1. Пусть требуется вычислить:
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Здесь f (x) = x3 – 2x – 3  и  g (x) = x2 + 3x + 3.  Так как g (3) = 32 + 3 ∙ 3 + 3 = 21 ≠ 0. то   имеем :
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   б) Если g (x0) = 0, то теорему о пределе частного применить нельзя. Тогда если ƒ(x0) = A ≠ 0, то
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если же ƒ (x0) = 0 – имеем неопределённость вида 0/0. В этом случае предел 
[image: image15.wmf](
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 можно вычислить разложением многочленов ƒ (x) и g (x) на множители или заменой y= x - x0.

       Пример 2. Вычислить 
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           Здесь ƒ (2) = 22 - 5∙2 + 6 = 0, g (2) = 22 - 6∙2 + 8 = 0. Так как x ≠ 2, имеем
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или, заменяя y = x-2 и учитывая, что y → 0 при x → 2, получаем
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3) Предел отношения многочленов 
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        Пример 3. Вычислить 
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         Пример 4. Вычислить
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         Пример 5. Вычислить 
[image: image24.wmf]2

4

2

1

3

2

4

lim

2

3

4

5

-

+

+

-

+

-

¥

®

x

x

x

x

x

x

x



[image: image25.wmf]¥
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4) Пределы некоторых иррациональных функций. Для вычисления  
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 где ƒ (x) ≥ 0 и 
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, воспользуемся равенством
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которое принимается нами без доказательства. Например,
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       Пример 6. Вычислить  
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      Так как  
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, то теорему о пределе частного применить нельзя. Умножая числитель и знаменатель на выражение, сопряжённое знаменателю, получим
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5) Применение замечательных пределов
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Пользуясь этими формулами, можно вычислить ряд пределов
        Пример 7. Вычислить  
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, заменяя 3x = y и учитывая, что y → 0 
при x → 0, получаем:  
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          Пример 8. Вычислить 
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Здесь мы воспользовались известным из курса средней школы пределом
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           Пример 9. Вычислить 
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Заменяя    
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  и учитывая, что   y → ∞   при    x → ∞,   можем написать
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Задания для практического занятия:
Вариант 1:
1.Найти предел функции в точке:                         

а) 
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б) 
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2.Найти предел функции на бесконечности:

а) 
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б) 
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3.Найти предел функции:

а) 
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Вариант 2:
1.Найти предел функции в точке:

а) 
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2.Найти предел функции на бесконечности:
а) 
[image: image54.wmf]5

6

2

7

lim

2

+

-

+

¥

®

x

x

x

x



б) 
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3.Найти предел функции:
а) 
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  Вариант 3:
1.Найти предел функции в точке:                         

а) 
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б) 
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2.Найти предел функции на бесконечности:
а) 
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б)
[image: image62.wmf]4

3

3

2

lim

x

x

x

x

x

+

+

¥

®


3.Найти предел функции
а) 
[image: image63.wmf]x

tg

x

x

4

2

sin

lim

0

®



б) 
[image: image64.wmf]x

x

x

x

3

4

lim

÷

ø

ö

ç

è

æ

-

¥

®



в) 
[image: image65.wmf]x

x

x

÷

ø

ö

ç

è

æ

+

¥

®

6

5

1

lim


Вариант 4:
1.Найти предел функции в точке:                         

а) 
[image: image66.wmf]2
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б) 
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2.Найти предел функции на бесконечности:

а) 
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б) 
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3.Найти предел функции:

а) 
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Контрольные вопросы

1. Перечислите теоремы о пределах.
2. Какие виды неопределенностей могут возникать при  вычислении некоторых пределов?
3. Пределы на бесконечности. Как в этом случае можно выйти из неопределенности?
4. Какие замечательные пределы вы знаете?

Практическая работа № 2 

 «Нахождение производных по алгоритму. Вычисление производной сложных функций»
Цель работы: научиться вычислять производные функции на основе определения и применяя формулы производных сложных функций
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь

- применять методы дифференциального исчисления;
знать: 

- основные понятия и методы математического анализа;
-основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

Основные правила дифференцирования 

а) c’ = 0;    б) (и ± υ)’ = и’ ± υ’;    в) (иυ)’ = и’υ + иυ’;    г ) 
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Дифференцирование сложной функции.  Если 
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 Здесь c = const,  u и υ - дифференцируемые функции
Таблица производных основных элементарных функций 
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Примеры по выполнению практической работы
Пример: Найти производные следующих функций :
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Решение. 1) Запишем данную функцию следующим образом:
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Тогда:
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2) Имеем
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    3)  Имеем
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     4) Имеем
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    5) Имеем
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Задания для практического занятия:
Вариант 1:
1. Вычислить производные следующих функций:

              1) 
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Вариант 2:
1.  Вычислить производные следующих функций:

    1) 
[image: image101.wmf]4
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3.  Найти 
[image: image109.wmf])

3

(

f

¢

, если  
[image: image110.wmf]1

1

)

(

2

+

-

=

x

x

x

f

.

Вариант 3:
1. Вычислить производные следующих функций:

               1)  
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3. Найти 
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Вариант 4:
1. Вычислить производные следующих функций:

     1) 
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2. Вычислить 
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3.  Найти 
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Контрольные вопросы

1. Дайте определение производной функции в точке.
2. Каков алгоритм вычисления производной функции в точке?
3. Перечислите основные формулы дифференцирования.
4. Назовите основные правила вычисления производных.
Практическая работа № 3
 «Решение задач на геометрический смысл производной»
          Цель работы: научиться вычислять угловой коэффициент касательной, угол наклона касательной. Уметь составить уравнение касательной и уравнение нормали.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь:
- применять методы дифференциального исчисления;
знать: 

- основные понятия и методы математического анализа;
 -основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

1. Геометрическое приложение производной. 

     Производная функции y = y (x) при данном значении аргумента x = x0 равна угловому коэффициенту касательной, проведённой к графику этой функции  в точке с абсциссой x0. (См. рис.):

[image: image1.jpg]



 y' (x0) = tg α .                       (1)                                                                                                                                                                                                                                 

Уравнение касательной к графику  функции в точке М0 (x0 ; y0)  имеет вид                                                                                 


y - y0 = y’(x0) (x - x0)    (2)              
 Уравнение нормали, т.е. прямой, проходящей через точку касания М0 (x0 ; y0) перпендикулярно касательной, записывается в вид
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2. Механическое приложение производной.
       Производная 
[image: image132.wmf])

(

'

0

x

y

 от функции y = y (x), вычисленная при значении аргумента x = x0, представляет собой скорость изменения этой функции относительно независимой переменной x в точке x = x0.

       В частности, если зависимость между пройденным путём s и временем t при прямолинейном движении выражается формулой s = s (t), то скорость движения в любой момент времени t есть 
[image: image133.wmf]dt
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, а ускорение (т.е. скорость изменения скорости движения) есть 
[image: image134.wmf]2
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Примеры по выполнению практической работы
Пример 1. Составить уравнение касательной и нормали к параболе 
y = 2x2 - 6x + 3 в точке М0 (1 ; -1).

Решение. Найдём производную функции y = 2x2 - 6x + 3 при x = 1. Имеем 
y’ = 4x - 6, откуда y’ (1) = -2.

    Воспользовавшись уравнением (2), получим искомое уравнение касательной:
y - (-1) = -2 (x - 1), или 2x + y - 1 = 0.

    Уравнение нормали получим, используя уравнение (3):
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Пример 2. Составить уравнение касательной и нормали к параболе
 y = 2x2 - 6x + 3 в точке М0 (1 ; -1).

Решение. Найдём производную функции y = 2x2 - 6x + 3 при x = 1. Имеем 
y’ = 4x - 6, откуда y’ (1) = -2.

    Воспользовавшись уравнением (2), получим искомое уравнение касательной:
y - (-1) = -2 (x - 1), или 2x + y - 1 = 0.

    Уравнение нормали получим, используя уравнение (3) :
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)

1

2

1

1

-

=

+

x

y

, или x - 2y - 3 = 0.
Пример 3. Составить уравнение касательной к кривой


                                                              x = t2 - 1,    

                                                              y = t2 + t - 3

в точке М (3 ; -1).

 Решение. Определим прежде всего значение t, соответствующее точке
 М (3;-1). Это значение должно одновременно удовлетворять уравнениям

t2 - 1 = 3 и t2 + t - 3 = -1, т.е. t2 = 4 и t2 + t - 2 = 0.

     Корни первого уравнения t1 = -2 и t2 = 2 ; корни второго уравнения t1= -2 и t2 = 1. Таким образом, точке М соответствует значение t = -2.

     Угловой коэффициент касательной к кривой в точке М равен значению производной
[image: image137.wmf](
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Следовательно, искомое уравнение касательной имеет вид:
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Пример 4. Точка движется прямолинейно по закону 
[image: image140.wmf]t
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 (s выражается в метрах, t - в секундах). Найти скорость и ускорение через 1 сек  после начала движения.

Решение. Скорость прямолинейного движения равна производной пути по времени:
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Отсюда  v (1) = 4 (м/с).

      Ускорение прямолинейного движения равно второй производной пути по времени:

[image: image142.wmf](
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и, следовательно, а (1) = 6 (м/с2).
Задания для практического занятия:

Вариант 1:
1.Найти угол наклона касательной, проведённой к кривой y = sin x в точке
[image: image143.wmf]3

2
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=

x

.
 2.Составить уравнение касательной  к кривой y = sin 3x в точке (
[image: image144.wmf]3

p

; 0 ) .
3.Найти абсциссу точки графика функции   ƒ(x) = 2(x – 9)2 + 12, в которой касательная параллельна OX.

4.Точка движется прямолинейно по закону S(t) = t2 + 5t + 1. Найти мгновенную 

скорость и ускорение точки в момент времени t = 5c.

  Вариант 2:
1.Найти угол наклона касательной, проведённой к кривой y = cos x в точке 
[image: image145.wmf]p

4
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x

.
2.Составить уравнение касательной  к кривой y = cos 3x в точке (
[image: image146.wmf]6

p

;0).

3.Найти абсциссу точки графика функции   ƒ(x) = 
[image: image147.wmf]2

1

 (x – 6)2 - 12, в которой касательная параллельна OX.

4.Точка движется прямолинейно по закону S(t) = t2 + 4t - 5. Найти мгновенную скорость и ускорение точки в момент времени t = 2c
   Вариант 3:
1.Найти угол наклона касательной, проведённой к кривой y = tg x в точке
[image: image148.wmf]p
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.
2.Составить уравнение касательной  к кривой y = sin 2x в точке (
[image: image149.wmf]6

p

 ;
[image: image150.wmf]2

3

).

3.Найти абсциссу точки графика функции  ƒ(x) = ln 3x - x, в которой касательная параллельна OX.

4.Точка движется прямолинейно по закону S(t) = 4t2 + 3t + 2. Найти мгновенную скорость и ускорение точки в момент времени t = 3c.
Вариант 4:
1.Найти угол наклона касательной, проведённой к кривой y = ctgx  в точке 
[image: image151.wmf]p
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2.Составить уравнение касательной  к кривой y = cos 2x в точке  (
[image: image152.wmf]3

p

; 
[image: image153.wmf]2
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).

3.Найти абсциссу точки графика функции  ƒ(x) =6(x – 1)2 + 5, в которой касательная параллельна OX.

4.Точка движется прямолинейно по закону S(t) = 2t2 + 8t + 10. Найти мгновенную скорость и ускорение точки в момент времени t = 1c.
Контрольные вопросы

1. В чем заключается геометрический смысл производной?
2. Напишите уравнения касательной и нормали к кривой.
3. В чем заключается физический смысл  производной первого порядка?

4. В чем заключается физический смысл  производной второго порядка?
Практическая работа № 4
 «Вычисление неопределенных интегралов»
Цель работы: научиться вычислять неопределенный интеграл методом непосредственного интегрирования и способом подстановки.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь

- применять методы интегрального исчисления;
знать: 

- основные понятия и методы математического анализа;
-основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

1. Неопределенный интеграл

Определение: Совокупность всех первообразных функций F(x) + c для функции f(x) на некотором промежутке называется неопределённым интегралом и обозначается:
∫ f (x) dx 
Таким образом,
∫ f (x) dx = F(x) + c,

где f(x) dx называется подынтегральным выражением, а c-произвольной постоянной интегрирования.

      Например:∫ 2xdx = x2 + c,  так как  (x2 + c)’= 2x.

Процесс нахождения первообразной функции называется интегрированием.

2. Метод непосредственного интегрирования.

       Под непосредственным интегрированием понимают способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводятся к одному или нескольким табличным интегралам.

Свойства неопределённого интеграла

     1) d ∫ f(x) dx= f(x) dx         

2)
∫ dF (x) =F(x) + c 

3)
∫ a ∙ f(x) dx=a ∫ f(x) dx    

4)
∫[f1 (x) + f2 (x) – f3 (x)] dx = ∫ f1 (x) dx + ∫ f2 (x) dx - ∫ f3 (x) dx

Формулы интегрирования
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3. Интегрирование методом замены переменной интегрирования

      Замена переменной производится с помощью подстановки:

t = ψ (x), где t – новая переменная. В этом случае формула замены переменной
         ∫ f [ψ(x)]ψ’(x) dx = ∫ f(t) dt.

      В полученном после интегрирования в правой части выражения надо перейти снова к аргументу x:
Примеры по выполнению практической работы
1) ∫ ( 5x4- 4x3+ 3x2- 1) dx=5∫x4 dx - 4∫ x3 dx + 3∫x4 dx - ∫dx = x5 – x4 + x3 – x + C
    Проверка:

      d (x5 – x4 + x3 – x + C) = (5x4 – 4x3 + 3x2 – 1) dx 

      2)  [image: image155.png]3 gx?
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    Проверка:
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    3)∫ (1 + x)5 dx
Положим 1+x = z
Продифференцируем это неравенство:

d (1 + x) = dz
dx = dz
      Заменим в интеграле:
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    4)
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[image: image159.wmf]dz
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Задания для практического занятия:

Вариант 1:
1. Методом непосредственного интегрирования вычислить: 

а) 
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2. Методом подстановки вычислить: 

а) 
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Вариант 2:
1. Методом непосредственного интегрирования вычислить: 

а) 
[image: image170.wmf]dx

x

x

x

ò

-

-

+

)

8

2

3

4

(

2

3



б) 
[image: image171.wmf]ò

-

dv

v

v

v

5

3

2

3



в) 
[image: image172.wmf]dx

x

x

ò

+

)

3

3

(

2


г) 
[image: image173.wmf]ò

÷

ø

ö

ç

è

æ

+

dx

x

x

3

cos

    д) 
[image: image174.wmf]ò

÷

ø

ö

ç

è

æ

+

-

dx

x

x

2

2

1

2

sin

3


2. Методом подстановки вычислить: 

а) 
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Вариант 3:
1. Методом непосредственного интегрирования вычислить: 

а) 
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2. Методом подстановки вычислить: 

а) 
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Вариант 4:
1. Методом непосредственного интегрирования вычислить: 

а) 
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2. Методом подстановки вычислить: 

а) 
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Контрольные вопросы

1. Дайте определение первообразной. Сформулируйте теорему.
2.Дайте определение неопределенного интеграла.

3.Какие основные формулы интегрирования вы знаете?

4. В чем заключается метод непосредственного интегрирования?
5.С каким способом интегрирования вы еще знакомы и в чем его суть?
Практическая работа № 5
 «Вычисление определенных интегралов»
Цель работы: научиться вычислять определенный интеграл методом непосредственного интегрирования и способом подстановки.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь

- применять методы интегрального исчисления;
знать: 

- основные понятия и методы математического анализа
-основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

1. Определённый интеграл и его геометрический смысл.

Приращение F (b) – F (a) любой из первообразных функций
 F(x)+ C при изменении аргумента от x = a до x = b называется определённым интегралом от a до b функции   f (x) и  обозначается:
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Числа a и b называются пределами интегрирования, а – нижним, b – верхним. Отрезок [a;b] называется отрезком интегрирования. Функция  f (x) называется подынтегральной функцией, а переменная x – переменной интегрирования.

        Таким образом, по определению


[image: image201.wmf](

)

(

)

(

)

ò

-

=

b

a

a

F

b

F

dx

x

f

.

Данное равенство называется формулой Ньютона -  Лейбница.

Геометрический смысл определенного интеграла: 

Если интегрируемая на отрезке [a;b] функция f (x) неотрицательна, то определённый интеграл:                       
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численно равен площади S криволинейной трапеции, ограниченной графиком функции f (x), осью абсцисс и прямыми x = a и x = b :
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2. Свойства определённого интеграла.

1. Постоянный множитель можно выносить за знак интеграла, т.е. если 

A = const. то


[image: image205.wmf](

)

(

)

ò

ò

=

b

a

b

a

dx

x

f

A

dx

x

Af


2. Определённый интеграл от алгебраической суммы двух непрерывных функций равен алгебраической сумме их интегралов, т.е.
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3. Если a<c<b, то
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4. Если функция f (x) неотрицательная на отрезке [a;b], где a<b, то
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5. Если  f (x)≥ g (x) для всех x € [a;b], где a<b, то
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6. Если  m и M – наименьшее и наибольшее значения функции f (x) на отрезке [a;b], где a<b, то
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      7.  (Теорема о среднем). Если функция f (x) непрерывна на отрезке [a;b], то существует точка 
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Примеры по выполнению практической работы

Пример 1:  Вычислить 
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Пример 2:  Вычислить 
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     Пример 3: Вычислить   
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     Пример 4:  Вычислить: 
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Задания для практического занятия:

  Вариант 1:
1. Вычислить методом непосредственного интегрирования следующие определенные интегралы:  

1) 
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2. Вычислить следующие интегралы методом подстановки:  

3) 
[image: image225.wmf](
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 Вариант 2:
1. Вычислить методом непосредственного интегрирования следующие определенные интегралы:  

1) 
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2. Вычислить следующие интегралы методом подстановки:  

3) 
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Вариант 3:
1. Вычислить методом непосредственного интегрирования следующие определенные интегралы:  

1) 
[image: image233.wmf]ò

+

1

0

2

1

x

dx



2) 
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2. Вычислить следующие интегралы методом подстановки:  

3) 
[image: image235.wmf](
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Вариант 4:
1. Вычислить методом непосредственного интегрирования следующие определенные интегралы:  
1) 
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2. Вычислить следующие интегралы методом подстановки:  

3) 
[image: image240.wmf](
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Контрольные вопросы

1. В чем заключается геометрический смысл определенного интеграла?
2.Запишите формулу Ньютона-Лейбница
3.Какие основные свойства определенного интеграла вы знаете?

4. В чем заключается метод непосредственного интегрирования?

5.С каким способом интегрирования вы еще знакомы и в чем его суть?

Практическая работа № 6

«Числовые ряды»
Цель работы: научиться исследовать числовые ряды на сходимость.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь:
-применять методы дифференциального и интегрального исчисления             
знать: 
- основные понятия и методы математического анализа.

-основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

Числовым рядом называется выражение вида
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где числа 
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 называемые членами ряда, образуют бесконечную последовательность.

        Ряд называется сходящимся, если последовательность его частичных сумм 
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при n→ ∞ имеет конечный предел:
[image: image247.wmf].
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 Этот предел называется суммой сходящегося ряда. Если    
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 не существует или бесконечен, то ряд называется расходящимся.  
Пример 1. Найти сумму ряда.
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Решение. По определению частичной суммы ряда имеем 
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Таким образом, получаем последовательность частичных сумм:
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 общий член который равен 
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Это означает, что ряд сходится и сумма его равна единице.

1.Необходимый признак сходимости ряда. Достаточные признаки  сходимости рядов с положительными членами.
          Ряд может сходиться только при условии, что его общий член 
[image: image255.wmf]n
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 при неограниченном увеличении номера 
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  стремится к нулю: 
[image: image257.wmf]0

lim

=

®

n

x

n

a

 - это необходимый признак сходимости ряда.

          Если же 
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 то ряд расходится – это достаточный признак расходимости ряда.

           Для знакоположительных числовых рядов имеют место следующие достаточные признаки, по которым можно установить их сходимость или расходимость.

1.Признак сравнения. Если члены знакоположительного ряда 
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начиная  с некоторого номера, не превосходят соответствующих членов ряда 
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то из сходимости ряда (2) следует сходимость ряда (1), а из расходимости ряда (1) следует расходимость ряда(2).

          При исследовании рядов  на сходимость и расходимость по этому признаку часто используется  геометрическая прогрессия.
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которая сходится при 
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 и расходится при 
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Гармонический ряд 
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является расходящимся рядом.

2.Признак Даламбера. Если для ряда (1) существует предел 
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то при  
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 вопрос о сходимости ряда  остается открытым).

3. Знакочередующиеся ряды. Признак сходимости Лейбница. 

Знакочередующимся рядом называется ряд вида
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 положительные числа.

       Для знакочередующихся рядов имеет место следующий признак сходимости.

       Признак Лейбница. Ряд (1) сходится, если его члены монотонно убывают по абсолютной величине и общий член стремится к нулю при 
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       Применение сходящихся рядов  к приближенным вычислениям основано на замене суммы ряда  суммой нескольких первых его членов .Допускаемая при этом погрешность очень просто оценивать для знакочередующегося ряда, удовлетворяющего признаку Лейбница, - эта погрешность  меньше абсолютного значения первого из отброшенных членов ряда.
Примеры по выполнению практической работы

Пример 1. Пользуясь необходимым признаком сходимости, показать, что ряд                             
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      расходится.

          Решение. Находим 
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Таким образом, предел общего члена ряда при 
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 отличен от нуля, т.е. необходимый признак  сходимости не выполняется. Это означает, что данный ряд расходится.
Пример 2.Спомощью признака сравнения исследовать на сходимость ряд:
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Решение. 1)
Сравним данный ряд с рядом 
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Ряд (*) сходится, так как его члены образуют бесконечно убывающую геометрическую прогрессии со знаменателем  
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исследуемого ряда меньше соответствующего члена 
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 ряда (*).Поэтому, согласно признаку сравнения, данный ряд сходится.

2)Сравним данный ряд с гармоническим рядом
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Каждый член 
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исследуемого ряда, начиная со второго, больше соответствующего члена 
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 ряда  (**). Так как гармонический ряд расходится, то, согласно признаку сравнения, расходится и данный ряд.

Пример 3. С помощью признака  Даламбера исследовать  на сходимость ряд:
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Решение. 1)Для того чтобы воспользоваться признаком Даламбера, надо знать (n+1)-й член ряда. Он получается путем подстановки в выражение общего члена ряда 
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Так как  
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2)зная 
[image: image292.wmf],

10

!

n

n

n

a

=

 найдем 
[image: image293.wmf]й

n

-

+

)

1

(

член ряда:
[image: image294.wmf].

10

)!

1

(

1

1

+

+

+

=

n

n

n

a


Вычислим


[image: image295.wmf].

10

1

lim

10

!

10

)!

1

(

lim

10

10

)!

1

(

lim

1

1

1

¥

=

+

=

+

=

ú

û

ù

ê

ë

é

¸

+

=

¥

®

+

¥

®

+

+

¥

®

n

n

n

n

n

a

a

n

n

n

n

n

n

n

n

n


Так как 
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то ряд расходится.

Пример 4. Пользуясь признаком  Лейбница, исследовать на сходимость знакочередующийся ряд
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Решение. Так как члены данного ряда по абсолютной величине монотонного убывают:
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     и общий член при 
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 стремится к нулю:           
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то в силу  признака Лейбница ряд  сходится.
Задания для практического занятия:
  Вариант 1:
1.Написать первые пять членов ряда по заданному общему члену:
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2.Найти формулу общего члена ряда: 
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3.Установить расходимость ряда  
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 с помощью следствия из необходимого признака.

4.Используя признак Даламбера, исследовать на сходимость ряд:
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5.Используя признак Лейбница, исследовать на сходимость ряд:  
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Вариант 2:
1.Написать первые пять членов ряда по заданному общему члену:
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2.Найти формулу общего члена ряда:  
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3.Установить расходимость  ряда 
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 с помощью следствия из необходимого  признака.                                                   
4.Используя признак Даламбера, исследовать на сходимость ряд:
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5.Используя признак Лейбница, исследовать на сходимость ряд:

 а) 
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Вариант 3:
1.Написать первые пять членов ряда по заданному общему члену:    
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Вариант 4:
1.Написать первые пять членов ряда по заданному общему члену:
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2.Найти формулу общего члена ряда:
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3.Установить расходимость ряда 
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 с помощью следствия из необходимого признака.

4.Используя признак Даламбера, исследовать на сходимость ряд:
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5.Используя признак Лейбница, исследовать на сходимость ряд:

а) 
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Контрольные вопросы

1. В чем заключается геометрический смысл определенного интеграла?

2.Запишите формулу Ньютона-Лейбница

3.Какие основные свойства определенного интеграла вы знаете?

4. В чем заключается метод непосредственного интегрирования?

5.С каким способом интегрирования вы еще знакомы и в чем его суть?

Практическая работа № 7
«Степенные ряды. Разложение элементарных функций в ряд Тейлора-Маклорена»
Цель работы: научиться исследовать степенные ряды на сходимость и раскладывать функции в ряд Маклорена
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь

-применять методы дифференциального и интегрального исчисления             
знать: 
- основные понятия и методы математического анализа.

-основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 
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Ряды членами которого являются функции от x, называется  функциональным. При одних значениях х ряд может сходиться, а при других – расходиться.
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       Функциональный ряд (1) называется сходящимся в точке 
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, если при 
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он обращается в сходящийся числовой ряд, если же при 
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получается расходящийся числовой ряд, то ряд (1) называется расходящимся в точке  
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.

      Совокупность значений х, при которых ряд (1) сходится, называется областью сходимости функционального   ряда.

     Из всех функциональных рядов наиболее распространенными на практике являются степенные ряды вида  
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или более общего вида 
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где постоянные  
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называется коэффициентами ряда.

    Областью сходимости любого степенного ряда вида (2) служит промежуток (– R; R)  числовой оси, симметрично точке х=0, дополненный, быть может, его концами. Этот промежуток, называемый промежутком сходимости, обладает тем свойством, что при всех | x |  < R ряд сходится, притом абсолютно, а при всех | x | > R – расходится. На концах промежутка сходимости, т. е. в точках х = - R и х = R, возможна как сходимость, так и расходимость степенного ряда.

     Для нахождения области сходимости степенного ряда (2), применяется признак Даламбера к ряду, членами которого служат абсолютные величины членов рассматриваемого степенного ряда, а затем исследуется сходимость ряда на концах промежутка сходимости.

Разложение элементарных функций в степенные ряды

Рядом Тейлора для f(x) называются степенной ряд вида
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Если а = 0, то получается ряд
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который называется рядом Маклорена.

       При представлении элементарной функции в виде суммы ряда Тейлора обычно поступают следующим образом: вычисляют последовательные производные данной функции в точке х = а ,а затем, пользуясь (1), составляют для нее ряд Тейлора и определяют промежуток сходимости полученного ряда. В этом промежутке ряд Тейлора сходится к порождающей его функции  f(x), если только все значения 
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 получается непосредственной подстановкой значения х = а в выражения 
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     Применяя указанный способ, можно найти разложение в ряд Маклорена для следующих функций:
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Помимо приведенного выше способа, можно получить разложения функций в ряд Тейлора, исходя из известных разложений, например, разложений 
(3)-(8). При этом возможно использование следующих действий над степенными рядами внутри их промежутков сходимости:  

1)два степенных ряда можно почленно складывать и умножать (по правилу умножения многочленов);

2)степенной ряд можно почленно умножать на общий множитель;

3)степенной ряд можно почленно интегрировать и дифференцировать любое число раз.

Так как степенной ряд для своей суммы есть ряд Тейлора, то полученное в результате указанных действий разложение будет искомым.

Примеры по выполнению практической работы

  Пример 1: Найти области сходимости степенных рядов:

      а)   
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      Решение . а) Составим ряд из абсолютных величин членов данного ряда:
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Согласно признаку Даламбера полученный знакоположительный  ряд сходится (абсолютно) при тех значениях х, для которых  
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Определим, при каких значениях х этот предел  l будет меньше единицы. Для этого решим неравенство 
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  , или |x+1| < 2, откуда -3 < x < 1.Таким образом, первоначальный  ряд сходится (абсолютно) в промежутке( -3, 1) - это и есть промежуток сходимости данного ряда.

     Исследуем сходимость ряда на концах промежутка сходимости. При 
х = - 3 получаем числовой ряд
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Это – гармонический ряд, который, как известно, расходится.

       При  х=1 получаем числовой знакочередующийся ряд
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который по признаку Лейбница сходится (условно).

     Итак, область сходимости данного ряда – полуоткрытый  промежуток 
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т.е. 
[image: image372.wmf]ï

î

ï

í

ì

=

¹

¥

=

.

0

0

,

0

x

при

x

при

l


Таким образом, согласно признаку Даламбера ряд сходится только в точке 
х = 0.

в) Имеем 
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 EMBED Equation.3  [image: image375.wmf].
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Следовательно, при любом х по признаку Даламбера данный ряд абсолютно сходится. Область сходимости рассматриваемого ряда есть вся числовая  ось.

      Пример 2. разложите в ряд Тейлора по степеням х – 2 функцию 
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      Решение. Вычислим значения данной функции и ее последовательных производных при x=2:
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Подставляя найденные значения и общее выражение ряда Тейлора для производной функции, получим
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   Это и есть разложение ряд Тейлора по степеням х – 2 для функции 
[image: image381.wmf].
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 Полученный ряд сходится к порождающей его функции  
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при любом значении х.

     Заметим, что искомое разложение можно получить также следующим образом. В разложение (3) заменим х на 5х; тем самым получим ряд Маклорена для функции
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Представив теперь функцию 
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   Пример 3. разложить в ряд Маклорена функцию 
[image: image387.wmf]).
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[image: image388.wmf] Решение. Заменяя в разложении (8) х на – 2х, получим
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или 
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    Разложение (8) справедливо в промежутке 
[image: image391.wmf],
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    Пример 4. Разложить в ряд Маклорена функцию 
[image: image394.wmf].
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     Решение. По известной тригонометрической формуле имеем


[image: image395.wmf].
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Разложить в ряд Маклорена функцию cos2x, заменяя в разложении (5) х на 2х:
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Разложение (5) справедливо при любом х, поэтому ряд Маклорена для cos 2x сходится к порождающей его функции также на всей числовой оси.

   Для того чтобы получить разложение в ряд Маклорена функции 
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Тогда
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Это и есть разложение в ряд  Маклорена функции
[image: image401.wmf].
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Очевидно, что оно справедливо  при любом х.

Пример 5.  Приложение рядов к приближенным вычислениям.

        Вычислить 
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, ограничиваясь первыми двумя членами ряда Маклорена для sin x, и оценить получающуюся при этом погрешность.

Решение. Так как разложение (4) справедливо при любом х, то, в частности, при 
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Полученный ряд - знакочередующийся. Ограничиваясь двумя членами этого ряда, т. е. считая 
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10

/

sin(

p

 равным их сумме, мы тем самым допускаем ошибку, не превосходящую первого отбрасываемого члена 
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Пример 6.  Вычислить 
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 с точностью до 0,01.

Решение. Пользуясь разложением (3) , при х=2 получим
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Остается решить вопрос о том, сколько членов данного ряда надо взять, чтобы получить значение 
[image: image411.wmf]2
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 с требуемой точностью. Пусть искомое число членов равно 
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, которую мы допускаем, заменяя сумму ряда его 
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 частичной суммой, равна сумме членов ряда, начиная с 
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Если заменить каждое из чисел
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Выражение, стоящие в квадратной скобке, есть сумма членов бесконечно убывающей геометрической прогрессии со знаменателем 
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Таким образом,
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Но, с другой стороны, ошибка 
[image: image423.wmf]k
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 не должна превосходить 0,01:
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Решая методом подбора неравенство
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получим 
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Итак, для достижения требуемой точности надо взять 8 членов ряда:
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Пример 7.  Вычислить 
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 с точностью до 0.01.

Решение. Данный определенный интеграл можно вычислить только приближенно.

Для этого разложим подынтегральную функцию вряд Тейлора:
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 здесь мы ограничились двумя первыми этого знакопеременного ряда,

 так как третий член 1/(5!5) меньше 0,01.

Задания для практического занятия:
Вариант 1:
1.Найти область сходимости заданного степенного ряда.
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2. Разложить в ряд Маклорена
                           
[image: image432.wmf]x

e

x

f

6

)

(

=


 3. Вычислить
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 с точностью до 0,0001
Вариант 2:
1.Найти область сходимости заданного степенного ряда
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2. Разложить в ряд Маклорена
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 3. Вычислить 
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 с точностью до 0,001

Вариант 3:
1.Найти область сходимости заданного степенного ряда
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2.Разложить в ряд Маклорена
                             
[image: image438.wmf]x
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 3.Вычислить
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Вариант 4:
1.Найти область сходимости заданного степенного ряда
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 2.Разложить в ряд Маклорена
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   3.Вычислить
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Контрольные вопросы

1.Какие ряды называются функциональными рядами?

2.Какой признак применяют при исследовании степенных рядов на сходимость?
3.Выведите формулу Маклорена.
Практическая работа № 8

« Дифференциальные уравнения первого порядка»
Цель работы: научиться решать дифференциальные уравнения первого порядка с разделяющимися переменными.
Образовательные результаты, заявленные во ФГОС третьего поколения:
Студент должен 

уметь
-применять методы дифференциального и интегрального исчисления;

-решать дифференциальные уравнения

знать: 

- основные понятия и методы математического анализа.

- основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 


[image: image443.wmf]
1. Дифференциальное уравнение 1-го порядка. Общее и частное решение.

          Дифференциальным уравнением первого порядка называется уравнение вида:

                                                  F (x, y, y( ) = 0.                            (1)              

т.е. содержит независимую переменную х, искомую функцию у(х) и её производную у((х).
      Разрешая уравнение (1), если это возможно, относительно производной у( получим 

                                                  у( = f (х,у).                                   (2)      

Иногда уравнения (1), (2) записывают в дифференциалах: 

                                                  P(х, у) dx + Q(x, y) dy = 0.         (3)      
     Дифференциальное уравнение имеет, вообще говоря, бесконечное множество решений.

          Всякое отдельно взятое решение дифференциального уравнения называется его частным решением.

          Для многих дифференциальных уравнений первого порядка общее решение можно задать формулой вида: 

                                                  y = y(x, C),                                   (4)      
где С  - произвольная постоянная такая, что при любом С функция (4) является частным решением дифференциального уравнения. С геометрической точки зрения совокупность всех решений дифференциального уравнения представляет собой семейство кривых, называемых интегральными кривыми, а каждое частное решение представляет собой отдельную интегральную кривую.

  Иногда не удаётся получить решения дифференциального уравнения в явной форме, т.е в виде  у = у(х, С), а получают их в неявной форме, т.е. решение задаётся формулой вида:

                                                  Ф (y, x, C) = 0                              (5)  
          Выражение типа Ф (х, у, С) = 0 в этом случае называют интегралом (частным, общим) дифференциального уравнения.      
2. Задача Коши для дифференциальных уравнений первого порядка.

        В случае дифференциального уравнения первого порядка задача Коши формулируется следующим образом: найти решение у = у(х) уравнения 
у(= f (х, у), удовлетворяющее начальному условию y(x
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 или в другой записи 
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- заданные числа. Задача Коши кратко записывается так:
у(= f (x, y);                                              (6) 
[image: image448.wmf]
у = у
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   при х=х
[image: image450.wmf]0

.
         Геометрически решение, удовлетворяющее начальному условию
 у (х
[image: image451.wmf]0

)= у
[image: image452.wmf]0

, представляет интегральную кривую, проходящую через данную точку (х
[image: image453.wmf]0

; у
[image: image454.wmf]0

).                

3. Дифференциальные уравнения 1-го порядка  с разделяющимися   переменными.

         Дифференциальное уравнение (2) называется уравнением с разделяющимися переменными, если имеет следующий вид:
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         В предположении, что 
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, уравнение с разделяющимися переменными (7) можно переписать в виде (разделить переменные):
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Уравнение вида (8) называется уравнением с разделёнными переменными.

         Теорема 1. Если существуют интегралы 
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  и 
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, то общий интеграл уравнения с разделёнными переменными (8) задаётся уравнением
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где 
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 - некоторые первообразные соответственно функций 
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 EMBED Equation.3  [image: image464.wmf])
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При решении дифференциальных уравнений с разделяющимися переменными можно руководствоваться следующим алгоритмом:

1) разделить переменные (с учётом условий, когда это можно делать);

2) проинтегрировать почленно полученное уравнение с разделёнными переменными;
3) найти его общий интеграл;
4) выяснить, имеет ли уравнение (5) решения, не получающиеся из общего интеграла;

5) найти частный интеграл (или решение), удовлетворяющий начальным условиям (в случае задачи Коши).

Примеры по выполнению практической работы

Пример:  Найти частное решение уравнения:  

          2уу( = 1 – 3х²;

          у
[image: image466.wmf]0

 = 3    при х
[image: image467.wmf]0

 = 0
         Это уравнение с разделяющимися переменными. Представим его в дифференциалах. Учитывая, что 
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Разделим переменные:  
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Интегрируя обе части последнего равенства, найдём 
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т.е.                                                             у²=х-х³+С
Подставив начальные значения х
[image: image472.wmf]0

=1, у
[image: image473.wmf]0

=3, найдём С.

9=1-1+С, т.е. С=9
Следовательно, искомый частный интеграл будет у²=х-х³+9, или 
х³+y² – x-9=0
Задания для практического занятия:
Вариант 1:
1.   Найти общее решение дифференциальных уравнений: 

                           а)   
[image: image474.wmf](
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2.  Решить задачу Коши (найти частные решения дифференциальных

уравнений):

                                      а)
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                                      б)   
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Вариант 2:
1.   Найти общее решение дифференциальных уравнений:

                         а)  
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2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

                     а) 
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                                      б)   
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Вариант 3:
            1.   Найти общее решение дифференциальных уравнений

    а)  
[image: image482.wmf]0
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    б) 
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2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

                       а)  
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                       б)   
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Вариант 4:
             1. Найти общее решение дифференциальных уравнений:
                    а) 
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2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

                     а)  
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                     б) 
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                               Контрольные вопросы

1.Дать определение дифференциального уравнения.
2.От чего зависит порядок дифференциального уравнения?

3.Назовите алгоритм решения дифференциального уравнения с разделяющимися переменными.

4.В чем заключается задача Коши?

Практическая работа № 9-10
« Дифференциальные уравнения второго порядка»
Цель работы: научиться решать дифференциальные уравнения второго порядка.
Образовательные результаты, заявленные во ФГОС третьего поколения:
Студент должен 

уметь
-применять методы дифференциального и интегрального исчисления;

-решать дифференциальные уравнения

знать: 

- основные понятия и методы математического анализа.

- основные методы дифференциального и интегрального исчисления
Краткие теоретические и учебно-методические материалы по теме практической работы 

1.Дифференциальные уравнения второго порядка 

        Дифференциальное уравнение второго порядка в общем случае записывается в виде:
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или, если это возможно, в разрешённом относительно у'' виде


[image: image491.wmf])

,

,

(

y

y

x

f

y

¢

=

¢

¢

.                     (2)                          

       Определение 1. Говорят, что формула 
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 представляет общее решение дифференциального уравнения второго порядка (1) или (2), если для любых значений 
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постоянных 
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является решением данного уравнения, и любое его частное решение может быть получено из формулы 
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 при некоторых значениях 
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2. Задача Коши для дифференциальных уравнений второго порядка.

        Для дифференциальных уравнений второго порядка задача Коши формулируется следующим образом: найти решение у = y(x) уравнения 
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 удовлетворяющее начальным условиям 
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где 
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 - заданные числа. Геометрически общее решение уравнения (1) или (2) представляет собой семейство интегральных кривых, а решение, удовлетворяющее начальным условиям 
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, представляет интегральную кривую, проходящую через данную точку 
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 в данном направлении – угловой коэффициент касательной к интегральной кривой (графику решения y = y(x)), проведённой в точке  
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равен данному числу 
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  Простейшее уравнение второго порядка имеет вид
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 Уравнения этого вида решаются двукратным интегрированием, 

полагаем 
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и уравнение (4) принимает вид 
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Отсюда
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где F(x) – одна из первообразных для функции f(x). Так как  

р = у',

то 
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Отсюда, интегрируя ещё раз, находим, как нетрудно проверить, общее решение уравнения (4) (в области, где существуют рассматриваемые интегралы):
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3. Линейные однородные дифференциальные уравнения 2-го порядка с    постоянными коэффициентами 

       Уравнение вида


[image: image521.wmf]0

2

1

0

=

+

¢

+

¢

¢

y

a

y

a

y

a

   ,                           (1)

где 
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 - действительные числа 
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, называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами.

         Чтобы решить уравнение (1), нужно решить характеристическое уравнение:
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При решении характеристического уравнения (2) возможны три случая, в зависимости от которых строится общее решение данного дифференциального уравнения (1)

	Корни уравнения (2)
	Частные решения уравнения (1)
	Общее решение уравнения (1)

	Действительные и различные: 


[image: image525.wmf]2

1

k

k

¹


	
[image: image526.wmf]x

k

x

k

e

y

e

y

2

1

2

1

;

=

=


	
[image: image527.wmf]x

k

x

k

e

C

e

C

y

2

1

2

1

+

=



	Равные: 
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	Комплексно  сопряжённые: 
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Примеры по выполнению практической работы


Пример 1. Найти общее решение уравнения 
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        Положим 
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        Интегрируя это уравнение, находим:
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Интегрируя второй раз, находим общее решение:
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Пример 2. Дана задача Коши:
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       Решение:  Положим 
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Интегрируя,  получим:
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Так как 
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Интегрируя почленно, получим
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Наложим начальные условия. Тогда
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Отсюда имеем, что
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Значит, частное решение следующее:
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Пример 3. Найти общее решение уравнений:

а)
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Решение: 

а) Составим характеристическое уравнение:
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Его корни 
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б) Составим характеристическое уравнение:
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Его корни 
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 EMBED Equation.3  [image: image565.wmf]3
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в) Составим характеристическое уравнение:
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Решая его, получим 
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 и комплексно сопряжённые корни 
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Задания для практического занятия:
Вариант 1:
1.Найти общее решение дифференциального уравнения:  
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2.Решить задачу Коши: 
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3. Ускорение тела, движущегося прямолинейно, изменяется по закону 
[image: image574.wmf]1
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  (ускорение - м/с2, время - сек). Начальное положение тела 
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. Найти закон движения тела и путь, пройденный за 3 секунды; 

4.  Найти общее дифференциального уравнения: 
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5 .Решить задачу Коши:  
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6. Решить задачу Коши:  
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Вариант 2:
1.Найти общее решение дифференциального уравнения:  
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2.Решить задачу Коши:   
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3. Из семейства интегральных кривых уравнения 
[image: image582.wmf]2

12

х

у

=

¢

¢

выделить ту, которая в точке(1;1) имеет касательную с угловым коэффициентом,  равным 4;

4.Найти общее решение  дифференциального уравнения: 
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5.Решить задачу Коши:  
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6. Решить задачу Коши:  
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Вариант 3:
1.Найти общее решение дифференциального уравнения:  
[image: image586.wmf]1
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2.Решить задачу Коши:  
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3. Из семейства интегральных кривых уравнения 
[image: image588.wmf])

1

(

6

х

у

-

=

¢

¢

 выделить ту, которая в точке (1; 5) имеет касательную с углом наклона к оси ОХ, равным 
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4.Найти общее решение  дифференциального уравнения:  
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5.Решить задачу Коши:  
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6.Решить задачу Коши:  
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Вариант 4:
1.Найти общее решение дифференциального уравнения: 

                           
[image: image593.wmf]2
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2.Решить задачу Коши:  
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3. Ускорение тела, движущегося прямолинейно, изменяется по закону 
[image: image595.wmf]4
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  (ускорение - м/с2, время - сек). Найти закон движения тела и путь, пройденный за 5секунд; если через 2 секунды после начала движения  
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4.Найти общее решение дифференциального уравнения:  
[image: image597.wmf].
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5.Решить задачу Коши:  
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6. Решить задачу Коши:  
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Контрольные вопросы

1.Какие уравнения называются простейшими уравнениями второго порядка и каков алгоритм их решения?
2.Какие уравнения называются линейными однородными дифференциальными уравнениями второго порядка с постоянными коэффициентами и как они решаются?
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